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aDEPARTMENT OF ENGINEERING SCIENCES, _IZMIR KÂTIP ÇELEBI UNIVERSITY, _IZMIR, T €URKIYE
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21.1 Introduction

Nanozymes are nanomaterials possessing enzyme-like catalytic properties and distinctive

physicochemical characteristics (Wong et al., 2021; Chai et al., 2023; Wu et al., 2024). Since

2007, when Gao et al. reported that iron oxide (Fe3O4) nanoparticles exhibit peroxidase-

mimicking activity (Gao et al., 2007), numerous studies have focused on synthesizing new

nanozymes and comprehending their mechanisms of action (Huang et al., 2019a; Wang

et al., 2019a). With advancements in nanotechnology, an increasing array of nanomater-

ials with natural enzyme-mimicking activities, including peroxidase (POD), catalase

(CAT), oxidase (OXD), glucose oxidase, superoxide dismutase (SOD), laccase, ascorbate

oxidase, and glutathione peroxidase, has been reported (Huang et al., 2019a; Wu et al.,

2024; Xin et al., 2023).

Nanozymes can be classified as metallic (e.g., Au, Ag, Pt, and Cu) ( Jv et al., 2010; Jiang

et al., 2012; Hu et al., 2013; Jin et al., 2017; Mansur et al., 2022), metal oxide (e.g., ZnO, CuO,

MnO2, and CeO2) (Biparva et al., 2014; Xu and Qu, 2014; Qu et al., 2021; Mansur et al.,

2022), carbon-based (e.g., carbon nanotubes (CNTs), modified graphene oxide (GO-

COOH), and carbon quantum dots (CQDs)), and hybrid nanostructures (Song et al.,

2010a,b; Singh et al., 2018; Wong et al., 2021; Mansur et al., 2022; Li et al., 2023). Compared

to natural enzymes, which exhibit low thermal stability and operate within a limited tem-

perature and pH range, coupled with high production costs, the nanozymes offer low cost,

straightforward preparation, controllable activity, high stability, and durability (Wong

et al., 2021; Wu et al., 2023; Chai et al., 2023). Therefore, nanozymes have been widely used

in fields, such as biological imaging (Sharma et al., 2014; Liang and Han, 2020; Chai et al.,

2023), environmental remediation (Gao and Yan, 2016; Li et al., 2018; Chai et al., 2023), and

disease diagnosis and treatment (Duan et al., 2015; Jeyachandran et al., 2023).

Environmental problems unquestionably stand out as one of the primary challenges

confronting living organisms today. Such issues include heavy metals, pesticides, herbi-

cides, fertilizers, oil spills, airborne pollutants, industrial wastes, sewage, and organic

compounds (Khan and Ghoshal, 2000; Vaseashta et al., 2007). Environmental remediation
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is crucial in safeguarding human health and ecosystems, ensuring compliance with reg-

ulations, fostering sustainable development, and contributing to the overall well-being of

regions and the planet. A variety of materials can be employed for this purpose. The com-

plexity, high volatility, and low reactivity of the materials make the capture and degrada-

tion of environmental pollutants challenging. Therefore, recent studies have focused on

developing nanomaterials for new environmental remediation technologies (Tratnyek

and Johnson, 2006). Among them, nanozymes are considered excellent contributions to

the improvement of both traditional and advanced wastewater treatment processes

(Long et al., 2021). It has been demonstrated that nanozymes exhibit catalytic properties

similar to peroxidase and oxidase, which are involved in the natural breakdown of pollut-

ants by enzymes (Zhang et al., 2020; Chai et al., 2023). Nanozymes can overcome the lim-

itations of traditional enzymes in terms of production cost, recyclability, reaction rate, and

operating range (pH and temperature) (Huang et al., 2019a; Meng et al., 2020; He and

Liang, 2020). They are commonly used, particularly in the removal of persistent organic

compounds, such as phenolic compounds, pesticides, dyes, and organophosphates, due

to their effectiveness in environmental remediation (Diao et al., 2024).

21.2 Types of nanozymes used in environmental remediation

The classification of nanozymes offers a comprehensive framework for understanding the

diverse functional and structural attributes, facilitating environmental remediation. Wong

et al. classified nanozymes into four categories according to their mimicry of natural

enzyme behavior. These categories include type I nanozymes, functioning similarly to

active metal centers; type II nanozymes, predominantly exhibiting peroxidase-like

activity; type III nanozymes, comprising metal or metal oxides integrated with carbon

materials, MOFs, or bimetallic alloys; and type IV nanozymes, characterized by their

three-dimensional nanostructures (Wong et al., 2021). Here, we classified nanozymes

as metal-based, carbon-based, and hybrid nanostructures. Fig. 21.1 illustrates the wide-

spread utilization of nanozymes across diverse environmental monitoring and remedia-

tion applications.

In the class of metal-based nanozymes, there are transition metal compounds (metals

with oxygen, sulfur, or nitrogen) (Fang et al., 2020; Xie et al., 2019; Tang et al., 2021), metal

nanoparticles (gold, silver, copper, platinumor palladium, iridium) (Huang et al., 2021a; Li

et al., 2021a; Geng et al., 2021), and mono-, bi- and multi-metallic alloys (Zhou et al.,

2022a; Song et al., 2022a; Xu et al., 2020). An initial instance of such nanozymes is provided

by Fe3O4 nanoparticles, as reported by Gao et al. in 2007, demonstrating peroxidase-like

activity akin to the natural horseradish peroxidase (HRP) enzyme, which catalyzes the oxi-

dation of chromogenic substrates, including 3,30,5,50-tetramethylbenzidine (TMB), 2,20-
azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and o-phenylenediamine

dihydrochloride (OPD), in the presence of hydrogen peroxide (H2O2). Cerium oxide

(CeO2) nanoparticles act as a nanozyme due to their similarity in structure and, primarily,
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their affinity to proteins in terms of biochemical properties, resembling iron ions. Their

catalase-like activity by decomposing hydrogen peroxide H2O2 into O2 and H2O, superox-

ide dismutase-like activity by converting O2
•� into O2 and H2O2, and peroxidase-like activ-

ity by facilitating various peroxidation reactions make them multifunctional catalysts

(Wong et al., 2021).

Metal-based nanozymes have been used, especially in the detection and degradation

of toxic ions, such as Fe2+/Pb2+(Xie et al., 2019), Hg2+ (Fang et al., 2020; Cao et al., 2020),

As3+ (Xue et al., 2021), As5+ (Zhong et al., 2019), andCu2+ (Luo et al., 2020); antibiotics, such

as kanamycin (Tang et al., 2021; Chen et al., 2020) and streptomycin (Wei et al., 2020), dyes

(Geng et al., 2021; Wang et al., 2023a), and phenolic compounds (Xu et al., 2020; Ma et al.,

2022); and pesticides (Sun et al., 2021a; Li et al., 2022a) and pathogens, such as Escherichia

coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus (Mirhosseini

et al., 2020; Fuentes et al., 2021) by mimicking peroxidase, oxidase, and/or catalase.

FIG. 21.1 Types of nanozymes used in environmental monitoring and remediation.
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Carbon-based nanomaterials, including fullerenes and their derivatives, carbon quan-

tum dots, carbon nanotubes, and graphene oxide, among other nonmetallic nanozymes,

can mimic enzymes, such as peroxidase, catalase, and oxidase due to their structural and

catalytic properties. For example, it has been reported that increased electron density and

mobility in carbon quantum dots result in peroxidase-like catalytic activity. The modifi-

cation processes of C-based nanozymes (such as carboxyl groups and N or B atoms) have

been indicated to enhance the catalytic activities of nanozymes (Wong et al., 2021).

C-based nanozymes have been utilized in the determination of toxic ions, such as Cr6+

(Goswami et al., 2022) and Al3+ (Song et al., 2022b) and pathogens like Yersinia enteroco-

litica (Savas and Altintas, 2019) and E. coli (Loukanov et al., 2022). On the other hand, the

use of C-based nanozymes in detecting and degrading toxic organic molecules, such as

dyes, phenolic compounds, and antibiotics, remains an open area of research.

Hybrid nanozymes are composed of a combination ofmetal- and carbon-based nanos-

tructures that can mimic multiple enzymes. For instance, the adenine phosphate-Cu

complex exhibited noteworthy peroxidase, laccase, and oxidase mimicking activities

through the coordination of Cu ions with specific nitrogen sites (N3, N6, N7, and N9)

on the adenine phosphate. Furthermore, it is applied to the degradation of phenolic com-

pounds and used in colorimetric sensing methods for detecting H2O2, epinephrine, and

glutathione with high sensitivity and selectivity (Chai et al., 2023).

As an eco-friendly alternative, the fungal chitosan–copper nanocomposite (CsCu)

showed laccase activity to oxidize various phenolic compounds in synthetic and real

wastewater (Mekonnen et al., 2023). A detailed study by Wu et al. revealed that most lit-

erature focuses on copper-based laccase-mimicking nanozymes. For noncopper laccase

mimics, MnO2 ultra-thin film was proposed for the detection of o-, m-, and

p-dihydroxybenzene isomers and the direct differentiation of tetracycline and its deriva-

tives (e.g., chlortetracycline, oxytetracycline) (Wu et al., 2024).

The enhanced enzyme-like activity observed in metal, metal compound, and carbon-

based nanozymes stems from their expansive surface area, achieved via either size

(typically in the tens of nanometers range for metal or metal compound-based nano-

zymes) or intricate porous frameworks (characteristic of carbon-based nanozymes)

(Wong et al., 2021).

21.3 Applications of nanozymes in environmental treatment

Nanozymes represent a revolutionary approach to environmental applications, including

soil, air, and water treatment, by seamlessly integrating the benefits of traditional chemi-

cals and biocatalysts. These innovative catalysts offer unparalleled attributes, including

superior stability, recyclability, ease of manufacturability, cost-effectiveness, prolonged

storage stability, and environmental compatibility. As a result, they emerge as promising

candidates for diverse environmental applications spanning various domains. Specifi-

cally, nanozymes exhibit tremendous potential in ecological monitoring and remediation,

where their unique properties enable effective pollution mitigation and restoration of
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ecosystems. Furthermore, their versatility extends to toxic ion sensing, detection and deg-

radation of organic compounds, antibacterial treatments, and beyond, making them

invaluable tools for addressing pressing environmental challenges with efficiency and

efficacy.

21.3.1 Toxic ions

Cases of inorganic ion contamination have led to detrimental effects on both the environ-

ment and human health worldwide. In affected regions, ecosystems have been disrupted,

leading to the decline of biodiversity and loss of habitat for various species. Additionally,

contaminated water sources pose a significant risk to human populations, causing acute

and chronic health problems upon ingestion or exposure. Table 21.1 lists the commonly

used modified or functionalized metal-based, carbon-based, and hybrid nanozymes that

have been employed to enhance the binding affinity toward target ions, thus further

improving sensitivity in detection applications. These modifications involve the surface

functionalization of nanozymes with specific ligands, receptors, or functional groups tai-

lored to interact specifically with the target ions of interest, particularly for Hg2+ and Cr6+.

In a representative study, the initially low peroxidase-like activity of ferromagnetic parti-

cles modified with cysteine (Cys-Fe3O4) because of Cys-Fe interaction has been enhanced

in the presence of Hg2+, forming a stronger coordination with Cys-Hg2+-Cys. Thus, the

environmental nanosensor demonstrated high accuracy and selectivity in detecting trace

levels of Hg2+ in both environmental and biological fluids, achieving a detection limit

(LOD) of 5.9 pM (Niu et al., 2019). Mao et al. obtained exceptional catalytic activity by syn-

thesizing SA-Fe/NG, a peroxidase mimetic comprising single-atom iron anchored onto

two-dimensional nitrogen-doped graphene. The detection mechanism is based on the

use of 8-hydroxyquinoline (HQ) (as the inhibitor to prevent the oxidation of TMB, and

the recovery of the blue color through the interaction between Cr(VI) and 8-HQ. The opti-

mized colorimetricmethod, with an LODof 3nM for Cr(VI) and high selectivity for various

othermetal ions, has been successfully employed in detecting Cr(VI) in both tapwater and

tuna samples (Mao et al. 2021). The primary detection method used is colorimetric, but

other techniques, such as electrochemical, optical, and surface-enhanced Raman spec-

troscopy (SERS), have also been employed.While PODmimics of nanozymes are predom-

inantly utilized in the detection of toxic ions, other nanozyme activities, such as OXD, dual

POD-OXD, CAT, SOD, phosphatase, and laccase-like activities, are also employed.

Although several nanozymes are used to detect toxic ions, only a few are employed in

degrading them. Wang et al. designed dendrimer-like macroporous silica nanoparticles

(DMSNs)@AuPtCo tri-metal nanozymes with peroxidase and catalase-like activities that

effectively removed (>95%) the excessiveH2O2 inH2O2 sewage (Wang et al., 2020). Su et al.

examined howmicrobial sensitivity regulationmechanisms (MSRM) function in response

to common heavy metal pollutants (As3+ and Cr6+) in paddy fields. They employed

nanoMn3O4-coated microbial populations (NMCMP) and found that Flavoisolibacter

and Arthrobacter are key bacteria involved in the remediation of As3+ and Cr6+ pollution.
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Additionally, NMCMP were shown to enhance the reduction of Cr6+ levels and suppress

the release and rapid oxidation of As3+ during the repair process of As2H2S3 (Su et al.,

2022). A bimetallic mesoporous nanozyme called AgRu@β-CD co GO had a porous struc-

ture with hydroxyls and GO aromatic rings that effectively adsorb Hg2+ and Cl� from

water. The nanozyme achieved over 95.4% removal efficiency for Hg2+ and 93.8% for

Cl� (Yan et al., 2022).

21.3.2 Organic pollutants

Organic pollutants pose a significant threat to water and soil quality, presenting a long-

standing challenge in their removal from these environments. Traditional methods for

wastewater treatment, including physical, chemical, and biological approaches, encoun-

ter various obstacles, such as the generation of toxic byproducts, high costs of production,

complex equipment requirements, nonselective oxidation reactions, and limited recycla-

bility (Singh et al., 2023). Nanozymes offer advantages for both detecting and degrading

organic pollutants present in wastewater and soil. We examined the types of nanozymes

employed in the remediation of antibiotic residues, dyes, phenolic compounds, pesti-

cides, and nano�/microplastics.

21.3.2.1 Antibiotic residues
Antibiotics are a class of compounds produced by microorganisms or synthesized chem-

ically, typically used to inhibit the growth of or kill bacteria. Nevertheless, once antibiotics

are introduced into animal or human systems, a significant portion of them is excreted via

feces and urine, retaining their original structures or metabolizing into byproducts. The

release of antibiotic residues into the environment poses risks, such as the proliferation

of resistance genes. Some antibiotics can potentially interact with nanozymes, particularly

if the nanozymes possess surface functional groups or catalytic sites that allow for chem-

ical interactions. However, the specific nature of this interaction would depend on various

factors, such as the chemical composition of the nanozymes, the structure of the antibi-

otics, and the conditions under which the interaction occurs. The utilization of nano-

zymes for detecting antibiotic residues is detailed in Table 21.2.

Tetracycline and kanamycin were mostly used in nanozyme-based antibiotic residue

detection. A highly effective portable sensor utilizing a hybrid Cu-doped-g-C3N4 nano-

zyme has been developed for real-time visual monitoring of remaining tetracycline in

milk, achieved through a π-π stacking-induced blocking mechanism. The Cu-doped-g-

C3N4 nanocomposite demonstrated enhanced peroxidase-like activity (LOD: 31.51nM)

compared to free Cu2+ and g-C3N4 nanosheets, attributed to the synergistic effects of

Cu2+ and g-C3N4 (Shen et al., 2022a). In addition to metal doping, incorporating recogni-

tion elements like aptamers can be utilized to develop aptasensors for the detection of

antibiotics. Alsulami et al. designed a target-specific aptamer-conjugated nanocomposite

comprising nonspherical gold nanoparticles and black phosphorus (BP-nsAu NPs), capa-

ble of detecting tetracycline with an LOD value of 90nM. The advantages of hybrid
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nanozymes, as well as the use of a free-radical scavenging ligand and rough surfaces (pro-

viding higher surface activation energy), were also highlighted (Alsulami and Alzahrani,

2024). Another recognition molecule, the molecularly imprinted polymer, is used for gen-

erating artificial cavities and binding sites for precise target recognition. Combining

molecular imprinting with enzymemimics not only retains the signal amplification capa-

bility of nanozyme catalysis but also addresses their lack of specific recognition. The pro-

posed Fe3O4@MIP nanostructure possesses channels for substrate access, allowing it to

mimic peroxidase activity and catalyze the oxidation of TMB. The MIP shell captures tet-

racyclinemolecules, partially blocking the channels and hindering the TMB reaction. This

approach enables highly selective colorimetric detection of tetracycline with an LOD of

0.4μM. Additionally, the magnetic properties of the nanozyme allow for easy recovery

and reuse, making it suitable for recyclable sensing applications (Liu et al., 2022). While

kanamycin was detected at the picomolar level using bimetallic oxide (CoFe2O4) nano-

zyme (Chen et al., 2020), sulfamethazine was detected at the femtomolar level using bime-

tallic PtNi nanozyme (Song et al., 2022a).

21.3.2.2 Dyes
The printing and dye industry has led to a surge in wastewater containing organic dyes,

posing a threat to aquatic life due to its high toxicity and difficulty in biodegradation.

Nanozymes, popular catalysts, are increasingly used to degrade various types of dyes,

alongside other methods like adsorption. In general, two different catalytic reaction sys-

tems exist: nanozymes with peroxidase-like features are used to create Fenton-like sys-

tems for dye degradation, while they can also be integrated with advanced oxidation

processes (AOPs) like peroxydisulfate (PDS) and peroxymonosulfate (PMS) activation to

develop effective dye degradation (Diao et al., 2024). Specifically, PMS can be efficiently

activated by specific catalysts, such as Fe-, Co-, and Cu-based nanozymes to generate

reactive oxygen species (ROS), which play a crucial role in the degradation of organic pol-

lutants. For instance, FeBi-NC single-atom nanozymes with dual active sites for both cas-

cade catalysis and peroxymonosulfate (PMS) activation were fabricated by Chen et al. and

used for RB degradation (Chen et al., 2022a). Table 21.3 lists the nanozymes and their effi-

cacy in degrading dyes such as methylene blue (MB), rhodamine B (RB), methyl orange

(MO), and malachite green (MG). In general, nanozymes achieve over 90% removal effi-

ciency in dye degradation, and especially, Fe3O4-based nanozymes have efficiencies

exceeding 99%.

21.3.2.3 Phenolics
Phenols pose serious risks to human health and the environment. These risks include car-

cinogenic effects, hormonal disruptions, and increased environmental pollution. There-

fore, reducing and controlling the effects of phenols is of critical importance. Table 21.4

lists the types of nanozymes recently used for phenolic compounds. Studies have shown

that nanozymes are an effectivemethod for both detecting and degrading phenols. Among

these compounds, 2,4-dichlorophenol is one of the most extensively studied. Laccase, a
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type of multicopper oxidase, is more commonly used in the reduction of phenolic com-

pounds. It exhibits the ability to convert molecular oxygen into water while simulta-

neously oxidizing substituted phenols and aromatic amines. Therefore, laccase-like

nanozymes are being explored as potential alternatives for laccase in practical applica-

tions. Based on the studies in the tables, the detection limit of phenols using nanozymes

typically falls within the micromolar range. Ferromagnetic nanoparticles are preferred

due to their abilities in the degradation of phenolic compounds. For instance, Jiang

et al. examined the catalytic properties of ferromagnetic chitosan nanozymes (called as

MNP@CTS), which promote the generation of ROS from H2O2.

The removal efficiency surpassed 95% within 5h. In addition, hybrid nanozymes gen-

erally come to the fore, combining the advantageous aspects of metals, metal oxides,

carbon-based materials, and polymers, and thus, higher efficiency and specificity can

be achieved.

21.3.2.4 Pesticides
Pesticides are organic compounds widely used inmodern agriculture to control and elim-

inate pests (Wong et al., 2021; Prasad et al., 2021). Pesticides significantly threaten human

health and the ecosystem by causing environmental pollution and contamination in food

and water sources. Due to their high toxicity, pesticides should not exceed a certain con-

centration in drinking and surface waters (Prasad et al., 2021). Traditionally, liquid or gas

chromatography coupled with mass spectrometry (LC–MS, GC–MS) has been used to

detect pesticides. However, these techniques have limitations as they are not suitable

for rapid in-field detection of pesticides and involve challenging operating conditions

(Hernández et al., 2005; Wong et al., 2021). Instead, nanomaterials mimicking enzymes,

Table 21.3 Degradation of dyes by nanozymes.

Nanozyme Dyes Activity
Removal
Efficiency (%) Ref.

Metal-based CoFe2O4 MB POD 91.2 Wu et al. (2018)

MnO2- and SiO2@Fe3O4 MG POD 99.5 Jangi et al. (2020)

Copper nanozyme MO POD 93.0 Geng et al. (2021)

Ag-Fe3O4 Triarylmethane POD >99.0 Wang et al. (2023c)

Hybrid Cu/H3BTC MOF Amidoblack Laccase 60.0 Shams et al. (2019)

Fe3O4@C-Cu2+ MG Laccase 99.0 Li et al. (2020)

Pd@ZnNi-MOF/GO MB POD 95.0 Su et al. (2021)

Cu2+-HCNSs-COOH MB POD 80.7 Zhu et al. (2021a)

PdNPs/PCNF MB POD, OXD 99.64 Dadigala et al. (2022)

Sulfur-doped graphdiyne

nanosheets

RB POD >98.0 Zhang et al. (2022a)

FeBi-NC SAzyme RB OXD 99.0 Chen et al. (2022a)

Fe3O4@Gel Indigo carmine POD 99.0 Zha et al. (2022)

CeO2@ZIF-8 MO POD 99.81 Yang et al. (2023a)
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such as peroxidases, oxidases, and phosphatases, can be used to detect pesticides (Prasad

et al., 2021). In addition to detecting pesticides, bioremediation strategies have been

developed to reduce their environmental impact by transforming them into less toxic

forms and facilitating their degradation. Table 21.5 lists metal-based and hybrid nano-

zymes used for the detection and degradation of pesticides. The detoxification of pesti-

cides is provided by enzymes, such as oxidoreductases, hydrolases, and lyases (Zhu

et al., 2020; Sharma et al., 2018). In recent years, it has been identified that nanozymes

can be effectively utilized for monitoring and degrading pesticide residues in plants, soil,

and water samples. Nanozymes mimicking phosphatase-like activity, such as CeO2 (Sun

et al., 2021a; Wei et al., 2019), are commonly used for pesticide degradation. Additionally,

nanozymes based on peroxidase-like activity, such as Fe3O4-based nanoparticles (Chen

et al., 2022b; Li et al., 2021c; Boruah and Das, 2020) or metal nanoparticles (Li et al.,

2022a; Weerathunge et al., 2019; Shah et al., 2021), are used.

21.3.2.5 Nano/microplastics
Nano- and microplastics are significant carriers of pollution initially found in oceans.

Their small size (<5mm), abundance, and widespread distribution facilitate ingestion

by marine organisms and their entry into the human body through food chains, posing

severe health risks. Due to their challenging metabolization, un-excreted nano- and

microplastics accumulate in the body, causing organ damage and diseases. Thus, remov-

ing and degrading these particles from water resources is crucial. Recently, nanozymes

have been utilized for the degradation of nano- and microplastics (Diao et al., 2024; Zan-

dieh et al., 2023). In a representative study, Kang et al. successfully conducted catalytic

oxidation ofmicroplastics by encapsulatingmanganese carbide nanoparticles within heli-

cal nitrogen-doped carbon nanotubes (Mn@NCNTs) through pyrolysis.Mn@NCNTswere

both able to oxidize cosmetic plastic microbeads by catalytically activating PMS to gen-

erate reactive free radicals, achieving a removal rate of 50%, and the degradation interme-

diates could serve as nutrients for aquatic algae without harming microorganisms (Kang

et al., 2019). Zandieh et al. showed that use of Fe3O4 nanoparticles, which is among the

most studied nanozymes with peroxidase-like activities, allowed it to degrade microplas-

tics with almost 100% efficiency when heated close to their melting temperature. Addi-

tionally, Fe3O4 nanoparticles were highlighted for their ability to be easily recycled

thanks to their magnetic properties and excellent stability (Zandieh and Liu, 2022). In a

supporting study poised to expand the application of artificial enzymes in combating

microplastic pollution, researchers concentrated on merging the magnetic attributes of

bare Fe3O4 nanoparticles with nanozyme technology to achieve near-complete removal

and degradation of microplastics (Palliyarayil et al., 2023).

21.3.3 Pathogens

Infectious diseases are known to be responsible for more than a quarter of global deaths,

and the primary causes are bacteria and viruses. Contaminated food and water are
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common sources of transmission of these diseases. As a result, the first step in managing

infectious diseases is to identify pathogenic microorganisms. The use of nanozymes in

biosensing has experienced significant growth in recent years, driven by advances in

the development and synthesis of various nanozyme-based systems specifically designed

for the detection of bacteria and viruses. Table 21.6 provides a summary of recently uti-

lized metal-based, carbon-based, and hybrid nanozymes for the detection and degrada-

tion of various pathogens.

Nanozyme-mediated pathogen detection utilizes a range of detection modes, includ-

ing colorimetric, fluorescence, and electrochemical detection. Savas et al. utilized gra-

phene quantum dots (GQDs) (<5nm) for the electrochemical detection of the

Y. enterocolitica. The electronic interactions, enhanced electrical conductivity, and cata-

lytic surface area between the Au electrode and GQDs were emphasized. Detection of the

analyte was achieved through H2O2 reduction by GQDs and hindered electron transfer

due to formation of the antigen–antibody complex (Savas and Altintas, 2019).

Nanozyme technology finds application in laboratory research methods like PCR and

enzyme-linked immunosorbent assays, as well as point-of-care devices such as electronic

biosensors and lateral flow detection strips, all of which serve as indicators for pathogen

detection and identification (Songca, 2022). Recently, a novel label-free and dual-readout

lateral flow immunoassay utilizing a multifunctional nanocomposite (Fe3O4@PDA@Pt)

with magnetic-adhesion-color-nanozyme properties was reported by Dou et al. (2022).

Fe3O4magnetic core simplified separation processes and surface adherent polydopamine

(PDA) films demonstrated robust adhesion to E. coli and provided colorimetric detection

signal, and platinum nanoparticles (Pt NPs) acted as nanozymes to generate an additional

catalytic signal for an LOD of 102–10CFU/mL. In another study, a nanozyme chemilumi-

nescence paper test was developed for the rapid and sensitive detection of the SARS-CoV-

2 antigen. The Co-Fe@hemin-peroxidase nanozyme that facilitated chemiluminescence

similar to natural peroxidase HRP, thereby enhancing the immune reaction signal and

achieving the LOD of 0.1ng/mL (Liu et al., 2021c).

In addition to the detection of pathogens, nanozymes are also being investigated for

their potential as antibacterial agents. Zhou et al. defined the nanozyme-based antibac-

terial alternatives as “nanozybiotics” (Zhou et al., 2022b). For instance, a single-atom

nanozyme based on Pt single atoms modified carbon nitride nanorod (SA-Pt/g-C3N4-K)

demonstrated excellent biocompatibility and achieved a killing efficiency of over

99.99% against gram-negative bacteria (Fan et al., 2022). Apart from their antibacterial

effects, nanozymes have emerged as a solution for preventing and removing marine bio-

logical fouling. Haloperoxidase mimicry, which involves the catalytic oxidation of halides

by H2O2 to form hypohalous acids, has been reported in CeO2-x nanorods (Herget et al.,

2017), and chromium single atoms coordinated on carbon nitride (Cr-SA-CN) (Luo et al.,

2022a).

While nanozymes are typically categorized for environmental applications related to

toxic ions, organic pollutants, and pathogens, they are also utilized in air purification (Elk-

omy et al., 2024) and glucose biofuel cells (Guo et al., 2020).
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21.4 Mechanisms of nanozymes

Nanozymes, mimicking enzymes like catalase, superoxide dismutase, peroxidase, and

laccase—prominent in living organisms—are frequently employed for detecting and

degrading heavy metals, along with organic pollutants like dyes, pesticides, and drugs.

The catalytic performance of nanozymes can be impacted by factors like composition,

size, morphology, solution pH, surface coverage, and surface chemistry (Navya and

Daima, 2016; Singh et al., 2023).

The mechanisms of action for these nanozymes can be categorized as follows.

21.4.1 Catalase-mimicking functionality

Catalase is an enzyme that catalyzes the breakdown of H2O2 into water and oxygen. First, it

was reported that the amine-terminated PAMAMdendrimers-Au nanoclusters mimic cata-

lase activity (Liu et al., 2017). Subsequently, it has beennoted thatCeO2, platinum, andman-

ganese oxide nanoparticles exhibit nanozymes with catalase-like activity. At the molecular

level, thenanozymesexhibitingcatalase-likebehavioroccur throughmechanisms, involving

bi-H2O2 association, acid-like dissociation, or base-like dissociation (Guo et al., 2020).

Different metal-oxide nanozymes exhibit catalase-like activity following one of the three

proposedmechanisms. For instance, the catalytic activity of cobalt oxide nanoparticles can

be better explained through the bi-hydrogen formation mechanism. In the case of CeO2

nanoparticles, the process involves the initial adsorption and reaction of H2O2 on the nano-

particlesurface,convertingoxygenandCeO2 intoH2-CeO2.Subsequently,uponreactingwith

another H2O2molecule, it further converts intowater (Thao et al., 2023; Wang et al., 2019c).

2Ce4+ + H2O2!2Ce3+ + O2+2H
+

2Ce3+ + H2O2+2H
+!2H2O+2Ce4+

21.4.2 Superoxide dismutase-mimicking functionality

Superoxide radicals are fundamental componentsofROSproducedasbyproductsduring the

metabolismof living systems. Superoxide radicals are closely associatedwithoxidative stress

and readily convert into other ROS forms. Superoxide dismutase, an enzyme found inplants,

animals, andmicroorganisms, exhibits a potent antioxidant property by catalyzing the con-

versionofsuperoxideanion radicals intoH2O2andoxygen (Thaoetal., 2023).Since the report

by Krusic and colleagues in 1991 (Krusic et al., 1991), stating that nanomaterial consisting of

60 carbonatomspossesses free-radical scavengingproperties, nanozymesmimicking super-

oxide dismutase, mainly composed of transition metals, such as copper, iron, and cerium,

and elements, such as nitrogen, oxygen, carbon, and sulfur, have been produced (Thao

et al., 2023). The various carbon-based nanomaterials, including graphene oxide (GO), car-

bon nanotubes (CNTs), and carbon dots (CDs), have demonstrated superoxide dismutase-

like activities.Among them,CeO2, trimanganese tetraoxide (Mn3O4), andmanganesedioxide

(MnO₂) nanoparticles effectively mimic the superoxide dismutase. The catalytic activity
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mechanism of nanozymes, which mimics the superoxide dismutase exemplified by CeO2

nanoparticles, is explained through the electron transfer model (Celardo et al., 2011). In this

model, the O•– molecule briefly binds to the reduced oxygen vacancy sites, releasing H2O2

through the absorption of two protons and the subsequent transfer of one electron from

Ce3+. In another theory, the superoxidedismutaseactivity ofCeO2nanoparticles is attributed

todefect regions formingat the interfacedue to theadsorptionofHO2
• speciesonto thenano-

particle surface, leading to H2O2 and oxygen (Wang et al., 2019c).

21.4.3 Peroxidase-mimicking functionality

Peroxidase enzymes facilitate the oxidation of an organic substrate by serving as an elec-

tron acceptor for H2O2. Since the initial report by Gao et al. in 2007 on the peroxidase-

mimicking capability of Fe3O4 nanoparticles, various metal oxides, conductive polymers,

metal–organic frameworks (MOFs), and carbon-based nanomaterials have been demon-

strated to mimic peroxidase activity (Liu et al., 2021b). Nanozymes mimicking peroxidase

exhibit catalytic activity through Fenton reactions, Fenton-like reactions, or electron

transfer mechanisms, as Adeniyi et al. reported (Adeniyi et al., 2020). The peroxidase-

mimicking activity of Fe3O4 nanoparticles has been associated with the production of

OH• and O•�/HO• radicals due to the released metal ions. Wang et al. suggested that

the degradation and mineralization of organic molecules, such as rhodamine B, are a

result of the radicals generated by Fe3O4 nanoparticles (Wang et al., 2010). In subsequent

studies, researchers suggested that peroxidase-like activity is more attributed to reactions

occurring on the nanoparticle surface than to the released metal ions. Supporting this

hypothesis, one study suggested the peroxidase-like activity of vanadiumpentoxide nano-

tubes for surface properties rather than free orthovanadate anions (Andr�e et al., 2011).

21.4.4 Laccase-mimicking functionality

Laccases are sourced from diverse organisms, such as plants, insects, fungi, bacteria, and

lichens. As amember of themulticopper oxidase family, laccases can oxidize a broad spec-

trum of phenolic (R-OH) and nonphenolic compounds (i.e., reactive dyes). In the catalytic

reaction of laccases, oxygen is the electron acceptor, producing water as a by-product

(Arregui et al., 2019). Currently, synthetic metal and metal-oxide nanozymes, such as

Fe, Ag, Pd, PdPt, guanosine monophosphate (GMP-Cu), Cys-His dipeptide-Cu (CH-Cu),

CeO2, MnO2, Fe3O4, and surface-modified nanomaterials, are actively utilized for the

elimination and conversion of R-OH (Chen et al., 2019). In addition, the micro�/nano-

sized CuO particles also exhibited peroxidase and laccase activities, as indicated by

TMB and phenol degradation (Liu et al., 2014). Significantly, the nanosized CuO in the

degradation of phenol, catechol, hydroquinone, and other byproducts has highlighted

to act effectively than larger particle size of nanozyme, which has insufficient phenol

degradation. The hypothesis has been proposed that the catalytic activity of CuO particles

increases due to the increased surface area/volume in smaller particles. Laccase-

mimicking nanozymes have been proposed to convert oxygen to water directly without
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generating H2O2. A study supporting this hypothesis employed CH-Cu for the removal of

2,4-dichlorophenol. After the reaction, adding ABTS and HRP to the supernatant did not

induce any color change. However, the introduction of H2O2 into the environment

resulted in an immediate shift in color to green, confirming the nanozyme’s mimicking

of laccase (Wang et al., 2019c).

The mechanism of R-OH transformation through metal and metal-oxide nanozymes

involves surface reactions encompassing R-OH adsorption, diffusion, chemical transfor-

mation, and product desorption steps. Metal and metal-oxide nanozymes initially adsorb

R-OH compounds onto their surfaces, forming surface complexes. Surface complexes

undergo one-electron transfer to produce phenoxy radical intermediates, inducing a

change in the metal redox state. The electrons in phenoxy radicals resonate with benzene

rings, leading to covalent bonding reactions, forming dimers, trimers, tetramers, oligo-

mers, and polymers. Simultaneously, the transfer of a solitary electron can result in the

dehydrogenation, hydrolysis, and hydroxylation reactions of R-OH, generating small

molecule species (Chen et al., 2019; Zhou et al., 2017; Wang et al., 2017).

21.5 Conclusion and future perspectives

Nanozymes are highly promising materials with numerous advantages, such as affordabil-

ity, straightforward preparation, robust stability, and recyclability, for the determination and

removal of metal ions with high sensitivity and selectivity, as well as the detection and deg-

radation of toxic organic molecules, such as dyes, phenolic compounds, and antibiotics.

Since their initial discovery, nanozymes have garnered increased research interest due to

their catalytic properties and enhanced tolerance to challenging working and storage con-

ditions compared to natural enzymes. They find applications across a wide range of fields,

including health sciences and ecological studies, encompassing diagnosis and treatment,

sensing, environmental monitoring, and remediation of environmental contaminants.

The majority of nanozymes exhibit peroxidase/oxidase-like activity in the presence of

metal ions, and this activity can be enhanced. Peroxidase-like catalytic activity, especially

in the degradation of environmental pollutants, such as phenols and dyes (MB, RhB), has

been the most explored activity. Composite nanozymes containing Fe3O4 nanoparticles,

especially on carbon materials or MOFs, have demonstrated higher catalytic efficiency

compared to metal/metal-oxide nanozymes. However, recent studies suggest that the

combination of nanozymes with natural enzymes may lead to positive synergistic effects

in specific applications. Ongoing efforts to improve catalytic activity aim to support sus-

tainable growth and increase the application of nanozymes in the environmental field.
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